
Calculus 1

Midterm Exam – Solutions
October 2, 2022 (18:30 – 20:30)

1) Prove using the ε-δ definition that lim
x→4

x2 − 2x− 8

x− 4
= 6.

Solution. Let ε > 0 be arbitrary and take δ = ε. Then, 0 < |x− 4| < δ implies that
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= |(x+ 2)− 6| = |x− 4| < δ = ε.

Thus, lim
x→4

x2 − 2x− 8

x− 4
= 6.

2) Apply l’Hospital’s Rule to evaluate the following limit: lim
x→0

[cos(x)]
1
x2 . Indicate which rules of differen-

tiation are being applied.

Solution. This limit is an indeterminate form of type “1∞” since cos 0 = 1 and lim
x→0

1

x2
= ∞. Notice

however that moving cos(x) to the exponent by writing

[cos(x)]
1

x2 = exp

(

1

x2
ln(cos(x))

)

,

where exp(x) = ex is used to keep things readable, the exponent has an indeterminate form as desired,
specifically “0/0”. We note that we are allowed to do this because when x is near 0, cos(x) is near 1, so
the value of ln(cos(x)) exists. Recall that if f is continuous at b and lim

x→a
g(x) = b, then

lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)

= f(b).

[This is Theorem 8 on page 120 of the textbook.] In our case, f(x) = ex is continuous everywhere, hence,

if lim
x→0

ln(cos(x))

x2
exists, then we can compute the limit by the above method. The limit of the exponent

as x → 0 can by found using l’Hospital’s Rule twice:

lim
x→0

ln(cos(x))

x2

l’H
= lim

x→0

− sin(x)
cos(x)

2x
= lim

x→0

− tan(x)

2x
l’H
= lim

x→0

− 1
cos2(x)

2
= −1

2
.

At the first application of l’Hospital’s Rule we used the Chain Rule, the derivatives (ln x)′ = 1/x, (cosx)′ =
− sin x, and the Power Rule (x2)′ = 2x. The second time we used l’Hospital’s Rule we employed the
derivatives (tanx)′ = sec2 x, (x)′ = 1, and the Constant Multiple Rule. The last equality follows by direct
substitution. Therefore we have

lim
x→0

[cos(x)]
1

x2 = exp

(

lim
x→0

ln(cos(x))

x2

)

= e−1/2 =
1√
e
.

3) Two curves are orthogonal if their tangent lines are perpendicular at each point of intersection.
Determine the value of the number a such that the curves xy = 1 and y3 = a3x are orthogonal.

Solution. We begin by noting that two lines are perpendicular iff the product of their slopes is −1. This
can be shown in various ways. For example, if the angle of inclination of one line is θ, the other line must
have π

2
− θ for its angle of inclination so that these angles add up to π

2
radians (90◦). The slope of the

first line is tan(θ) whereas the second line has slope tan(π
2
− θ) = − cot(θ) = − 1

tan(θ)
.
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Next, we will calculate the derivatives for each curve using the Generalized Power Rule. We have
y = x−1 ⇒ y′ = −x−2 and y = ax1/3 ⇒ y′ = 1

3
ax−2/3. Hence the product of the slopes of tangent lines

is −1
x2 · a

3x2/3 . For the curve to be orthogonal this must equal −1, that is −1
x2 · a

3x2/3 = −1 or equivalently,

a = 3(x2)(x2/3) = 3
(

1
y

)2
(

y
a

)2
= 3

(

1
a2

)

. In the second equality we used the equations of the curves to

express x in terms of y. Comparing the two sides we see that a = 3
a2

⇔ a3 = 3 ⇔ a = 3
√
3.

4) Show that the equation x3 + ex = 0 has exactly one solution.

Solution. Consider the function f(x) = x3 + ex. Being an elementary function f is continuous over its
domain, which in this case, is the entire number line. Moreover, we have f(−1) = (−1)3+e−1 = 1

e
−1 < 0

(because e > 1) and f(1) = (1)3 + e1 = 1 + e > 0, therefore by the Intermediate Value Theorem there
exists a number a ∈ (−1, 1) such that f(a) = 0. This number is a solution of the equation x3 + ex = 0.
To show that there aren’t any other solutions, we argue indirectly. Assume that a number b 6= a exists
such that f(b) = 0. Since f is differentiable everywhere, by the Mean Value Theorem there is a number
c between a and b such that

f ′(c) =
f(b)− f(a)

b− a
=

0− 0

b− a
= 0.

However the derivative function f ′(x) = 3x2 + ex only takes positive values, i.e. f ′(x) > 0 for all x
(because x2 ≥ 0 and ex > 0 for all x). This contradicts f ′(c) = 0 and thus the proof is concluded. We
have shown that there is exactly one solution to the equation x3 + ex = 0.

Remark. Note that we did not solve the equation x3 + ex = 0, but we were still able to show that it has
a (unique) solution.

5) Compute the 2nd-degree Taylor polynomial for the function f(x) = x ln x centered around the point
where f attains its minimum.

Solution. First, notice that the function is only defined for positive x. We have f ′(x) = 1 + ln x = 0 ⇒
x = e−1 and f ′′(x) = x−1 ⇒ f ′′(e−1) = e > 0. Thus (by the Second Derivative Test) f has a local

minimum value at x = e−1 having the value f(e−1) = e−1 ln(e−1) = −e−1. Since lim
x→0

x ln x
l’H
= 0 and

lim
x→∞

x ln x = ∞ the local minimum at x = e−1 is absolute.

The second-degree Taylor polynomial around x = e−1 is

f(x) = f(e−1) + f ′(e−1)(x− e−1) +
f ′′(e−1)

2
(x− e−1)2 = −e−1 +

e

2
(x− e−1)2 =

e

2
x2 − x− 1

2e
.

6) Find a function F such that F ′(x) = x3 and the line x+ y = 0 is tangent to the graph of F .

Solution. By the Power Rule for Integrals, F ′(x) = x3 implies that F has the general form

F (x) =
x4

4
+ C.

The line given by the equation x + y = 0, or equivalently y = −x, has slope −1. So for this line to
be a tangent line the graph of F , we need F at the point of tangency (a, F (a)) to have the derivative
F ′(a) = a3 = −1. This equation for a has a unique real solution, namely a = −1. At that point, we have

y = F (a) = F (−1) = (−1)4

4
+ C = 1

4
+ C (for the graph of F ), but also y = −a = −(−1) = 1 (for the

tangent line). Since the two curves meet at (x, y) = (a, F (a)) they must have matching y-coordinates,
meaning 1

4
+ C = 1, i.e. C = 3

4
. Thus the solution is

F (x) =
x4

4
+

3

4
=

x4 + 3

4
.

Page 2 of 2


